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of suggestions and additions. 
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THE USE OF THE METHOD OF AVERAGING TO STUDY NON-LINEAR OSCILLATIONS 
OF THE CELTIC STONE* 

M. PASKAL 

The approximate solution of the equations of the perturbed motion of a 

Celtic stone near its position of equilibrium, obtained in /l/ by retaining 

in these equations terms of the second order with respect to the perturba- 

tions and averaging** (**In connection with a footnote in /3/ which 

appeared later than /l/, we note that the solution obtained in /3/ is 

identical with that appearing in /l/) is used for a qualitative and 

quantitative explanation of the following effect established by numerical 

integration of the complete equations /2/. If the Celtic stone is rotated 

about the vertical axis in a specified direction, then after a fairly short 

time it ceases to rotate, begins to oscillate about the horizontal axis, 

and then resumes its rotation in the opposite direction. For some of the 

models of the Celtic stone the change in the direction of rotation may 

occur more than once. 

Let m be the mass of the body, GxIxzza the coordinate system attached to the body whose 

axes are directed along the principal central axes of inertia of the body, A,B,C are the 

corresponding moments of inertia, zO,yO are the horizontal coordinates of the centre of mass 

in the fixed coordinate system O&,y,z, (the O@OyO plane is the same as the reference plane), 
q,$,e are the Euler angles determining the orientation of the system Gxlqzs relative to O+Q~,,Q, 

6,q.b are the coordinates of the point I of contact of the body with the reference plane in 
the system Gx~.z~z~,P,,P~ are the radii of curvature of the body at the point J with coordinates 

(O,--a,O) in the system Gz,z+zt,or is the angle defining the position of the principal axes of 
curvature at the point J relative to the axes Gz,, Gz,. We study the same model of the Celtic 
stone as that in /2/. In particular, the following inequalities hold for this model: 

PZ>Pl>% O<a<sl% map,<A+C--<mep, 

mpg,>B>A>C (B=A+ma',C=C+ma') 

"h.e system under consideration represents a non-holonomic Chaplygin system. Its equations 

of motion are independent of the angle $ and admit of the family of solutions 

e=s/2,~=0,*~=0 (1) 

where o is an arbitrary constant. The solutions correspond to uniform rotation of the body 

about the vertical axis GQ, and to the equilibrium state of the body when o=o. The point 
of contact I of the body with the plane coincides with the point J of the body. 
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The stability of this motion was studied in detail in /4/. Here we shall consider the 
case of instability, when 0 <oo 

ms(Pl--a) (Pt--a) 
00s=(A+C-BB)(pl+Ps-2u)+ma(ap,+091-_~) 

The approximate solution of the equations of motion has the form /l/ 

Here b,d (b>d>O) and B,,B8 denote the frequencies and initial amplitudes of the normal 
oscillations of the body about the horizontal axes, and y is the angle defining the direction 
of these axes. The values of the parameters b,d,y were given in /l/. 

Assuming that at the initial instant I$= 0, the precession of the body is given by the 
equation 

BV* = B(rl) 
H (I#) = Boa + b*B,* (1 - exp (N,$)) + @B? (1 - eq (N&)) 

Nl= - Nb’, N,=Nd,, N=+= 

f; 
(.T-cc)>0 

The coefficients N,,N, are functions of y, ba,d2(N1<0,N4>O) /l/. Eqs.(2) determine the 
normal oscillations of the body , and these oscillation do not decay. When $>O, oscillations 
of frequency d predominate, while when Ip<O, we have the frequency b. 

Inspecting the function B(q) we find that it vanishes at two values, *I and qn, of opposite 
signs; let us specify that ql>O and rp,<O.Then the precessional motion will represent a 
periodic variation in the angle $ between the values $I and $= at which the rotation changes 
its direction. Thus when the initial angular velocity o is small, the direction of rotation 
of the Celtic stone will change irrespective ofthedirection oftheinitial rotation. 

When the initial angular velocity is positive(negative), the instant tl (instant tn) of 
the first change of direction is given by the formula 

The initial amplitudes of the normal oscillations of the body are determined by the shift 
of the point of contact I from the point J at the initial instant. Let the point I deviate at 
the initial instant by to in the direction of the Gxl axis, and by &, in the direction of the 
Gxs axis. The quantities Lo and to are assumed to be small compared with the size of the body. 
Using the above displacements, we can find the initial perturbations PO,Q of the variables 6 
and cp, and the initial amplitudes of the normal oscillations 

Let us apply the results obtained to the model of the Celtic stone studied in /2/. The 
parameters of the b&y are as follows: )a= 150g, A = 4.5 xiOsg.mm2, B = 6.105 g.mm2 c = 2.105 g.mm* 
a=iOmm, p1 = 25 mm, PI= 500 mm and 1 oI<lOsecY1. The critical angular velocity is 0~~32 
set-1. 

We shall consider the neighbourhood of the position of equilibrium. Let the initial 
perturbations uO,ua,o be of the order of the small parameter e. The order of magnitude of the 
initial amplitude of oscillations of the body is given by 

n=mar(IBlI/~/, l&l!r/?} 

The quantity q is a dimensionless parameter depending on Q. The deviation of the point 
I from J is chosen to be the same as in /2/, i.e. Eo=O, L= 2mm. 

The initial velocity o must be small compared with the characteristic velocity such as 
e.g. the critical velocity oO. We shall estimate the order of smallness of this initial 
velocity in terms of the dimensionless parameter e= o/oO. Henceforth, we shall assume that 
loI= 1 set-l, so that e = 3.2.10". 

The figure shows the dependence of the parameter n on CL. We see that when iO"$a<3@' 
the numerical value of q is of the same order as e. 

When 10°s;a<36" and lol=isec-1, the approximate values of the roots g, and 9~ of the 
equation H(g)= 0 can be found from the formulas 
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1+q+r i+q+r ~l+n-_. $2q+l--g d=Bz= 
, &$?I, r=- 

B 

and we obtain the following estimates for f, and t,: 

$1 (1 + 9 + r)-+*< t1 < Wl? -Jir < tz < -2% 0) 

The figure shows the dependence of the roots w1 and qzon CL. For a given value of CL the 
value of $r is greater than that of j&l in all cases. 

zoo 4 The estimates (3) show that for a given value of a t, is 
greater than tz. 

Thus we can conclude that the direction of rotation 
changes much more rapidly if the body rotates in the positive 
direction, and this agrees with the results of numerical 
experiment /2/ where a = 30", 1 o j=l andtheintervalofinte- 
gration was 4min. The firstexperiment,where' a= 50, 1 CO\= 5 

,7 
andtheintervalofintegrationwas 30sec., confirms this. The 
authors discovered the change in the direction of rotation 

1. 

2. 

3. 
4. 

kTIfd 
only in the case when the initial angular velocity was 
positive, because the interval of integration shorter than 

il. Had they used a longer interval of integration, e.g. 
2 min, they would have noticed that the change in direction 
occurs for either direction of the initial angular velocity. 

-Y* The author thanks S.Ya. Stepanov for useful discussions. 
0 0 
I III 20 e~deg. 
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THE SUFFICIENT CONDITIONS FOR THE EXISTENCE OF 
ASYMPTOTICALLY PENDULUM-LIKE MOTIONS OF A HEAVY RIGID BODY 

WITH A FIXED POINT* 

A.Z. BRYUM and G.V. GORR 

The present paper continues the study of the asymptotically pendulum-like 
motions (APM) of a heavy rigid body begun in /l/, where a specific mass 
distribution is not assumed here a priori. The first Lyapunov method 
/2/ is used to obtain new sufficient conditions for the existence of APM, 
which cannot be described by the well-known particular solutions of the 
Euler-Poisson equations. 

1. The equations of the first approximation. We shall attach to the body a 
special coordinate system /3/ and assume that the centre of mass lies intheprincipal plane 
of the ellipsoid of inertia constructed for the fixed point. Then the equations of motion 

will have the form /3/ 
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